x(1,063^10-1)/1,063-1=100000*1,063^10

Simple and best practice solution for x(1,063^10-1)/1,063-1=100000*1,063^10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(1,063^10-1)/1,063-1=100000*1,063^10 equation:



x(1.063^10-1)/1.063-1=100000*1.063^10
We move all terms to the left:
x(1.063^10-1)/1.063-1-(100000*1.063^10)=0
We add all the numbers together, and all the variables
x(1.063^10-1)/1.063-184219.246976=0
We multiply all the terms by the denominator
x(1.063^10-1)-(184219.246976)*1.063=0
We add all the numbers together, and all the variables
x(1.063^10-1)-195825.059535=0
We multiply parentheses
x^2-1x-195825.059535=0
a = 1; b = -1; c = -195825.059535;
Δ = b2-4ac
Δ = -12-4·1·(-195825.059535)
Δ = 783301.23814
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{783301.23814}}{2*1}=\frac{1-\sqrt{783301.23814}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{783301.23814}}{2*1}=\frac{1+\sqrt{783301.23814}}{2} $

See similar equations:

| 3x-4=4x–2 | | 3x-4=4x–2 | | 3=5x–2 | | 12-3D=2d-3 | | (4y-2)+8=2y+6 | | 5+15*2=x | | 10+20*2=x | | 3/6=x24 | | 2(a-3)=1/2(4a-12) | | (3x-5)-(x-4)=3-x | | 3(a-2)=-5-2(a-3) | | -4y/3=-3/4 | | -6a+9=4(5-a) | | 6a-4=2(3a-2) | | 2^x-1+2x=12 | | 7(3x+)=49 | | 10x+2500=1300 | | 32/18=x/15 | | 3x+54=x+4x | | 5x+8=43-3x | | 5(d-4)=7(d-2) | | 4a=2-(a-4) | | (x-2)^2-3(x+1)=(x+2)(x-2) | | 2y+4=2y= | | x/2+4=1/8 | | 7+3x−6=3x+5−x | | 11=-2+r | | 7^x-1=8 | | 5x-6=3(x-1 | | 3^(x+1)-3^(x-1)-72=0 | | 2x-20=180-100 | | -4x+3=-6x-18 |

Equations solver categories